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An explicit adaptive-grid finite differencing method for one-dimen- 
sional radiation-magnetohydrodynamics computations is described. 
Based on the equidistribution principle, this explicit procedure moves 
the grid points to regions with high spatial gradients in physical quan- 
tities, such as temperature, mass density, pressure, and momentum. 
The governing magnetic field, radiative transfer, and hydrodynamics 
equations are transformed to the moving adaptive reference frame. The 
time and spatially dependent radiation field is determined by solving the 
radiative transfer equation with the multigroup discrete ordinate S,,, 
method with implicit time differencing. The magnetic field is solved 
through a diffusion equation resulted from Maxwell’s equations and 
Ohm’s law. The field equations are solved using a first-order upwind 
spatial differencing and explicit time differencing scheme. The coupling 
between the fluid and radiation field is treated explicitly by first solving 
for the radiation field and then the fluid equations, A conservative dif- 
ferencing scheme based on the control volume approach is chosen to 
retain the conservative nature of the governing equations. 0 1992 

Academic Press. Inc 

1. INTRODUCTION 

Radiation processes and radiation transport play an 
important role in inertial confinement fusion (ICF). The 
dynamics of target implosions can be strongly affected by 
radiative transfer. The indirect drive approach for target 
design purposely converts the driver beam energy in the 
form of laser light or ion beams to X rays and uses these X 
rays to drive the implosion. A background gas in the ICF 
target chamber is important for transporting light ion 
beams from the final driver element to the target. Light ion 
beams with their high charge to mass ratio and high current 
densities, cannot propagate over large distances in a 
vacuum without significant beam divergence. One solution 
to this, first proposed by Yonas [ 11, is to fill the standoff 
region with a gas and strike a discharge along the path from 
the diode to the target. This gas is preconditioned by 
passing a current through it to form a long magnetized 
plasma between the ion diode and the target to confine the 
ion beams as shown in Fig. 1. Radiative transfer can play an 
important role during the formation of this z-discharge 

plasma channel. It certainly plays a role as an ion beam 
passes through and heats the plasma channel. The gas in the 
target chamber also interacts with the exploding target as 
shown in Fig. 2, creating a so-called microfireball. These 
hot and dense plasmas emit and reabsorb radiation at soft 
X-ray energies (l-1000 eV). The radiation represents a 
significant energy transfer mechanism in the plasma, thus 
the coupling between the plasma and the radiation field 
must be accurately determined to predict and interpret the 
outcome of ICF experiments. 

Previous studies involved modeling these target chamber 
problems on a lagrangian grid system with the radiative 
transfer represented by a diffusion equation [2-41. The 
advancements to be made in this paper are solving the 
governing equations on an adaptive grid system and repre- 
senting the radiative transfer without making the diffusion 
approximation. 

The plasma hydrodynamics in both ion beam transport 
channels and ICF target explosions has characteristics of 
steep gradients and shock structures that need to be handled 
with a robust computational grid system. In this paper, we 
describe an adaptive-grid finite difference scheme for ICF 
plasmas in the frame of radiation hydrodynamics that 
satisfies this need. 

2. ADAPTIVE-GRID SYSTEM 

The grid generation is based on the equidistribution 
principle [S, 63 

Ax. W(x) = const 

which states that at every timestep in the simulations the 
mesh points are arranged such that this product remains 
constant. Here, Ax is the cell size and W is a cell-averaged 
weight function. This principle leads to an explicit grid 
generation technique that has some advantages over an 
implicit one. It is easy to apply and easy to control such a 
mesh distribution. Mesh smoothness is simple and robust. 
In the present work, the smoothness is done on the weight 
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FIG. 1. Schematic of beam propagating plasma channel in LIB fusion. 

function W, which indeed results in a smooth grid distribu- 
tion. 

Governing partial differential equations for fluid systems 
are generally described using a laboratory frame of 
reference. They can be transformed to a more general 
reference frame that reduces to the eulerian and lagrangian 
frames when the reference velocity is zero or equal to the 
local fluid velocity. In order to transfer the governing equa- 

and, thus, 

a a ar a at 
az=ayz+m’ 

a a ar a at 
ig=m;lr+zig. 

We choose atlas = 1 and atlag = 0. That leaves us with 

aa a 
-=--r - at aT ’ at-’ 
a ia 
ar rg a< 

or, in another representation, 

tions from (r, t) to an 
variable transformation 

adaptive system (5, z), we use a 
as follows 
t=t 

t = 5(r, t) 

0 
0 

0 

[MICRO-FIREBALL] C I,= [I I,-r,C I, 

c 1r=; c I<. 
(1) 

SHOCK-WAVE 

0 

Here, rg and rr are the mesh metric Cjacobian) and the speed 
that will appear with the unknowns in the transformed 
equations. In order to solve the set of transformed equa- 
tions, which are given in Section 4, we must estimate these 
mesh quantities in advance. 

The information required about these quantities could be 
sought for the time t”+ ’ as well as for the time t”. However, 
before any attempt to solve physical equations at t”+ ‘, we 

FIG. 2. Schematic diagram showing the physical processes occurring 
in an ICF target chamber after target explosion [23]. 
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let the mesh points move from t” to t”+’ depending on the 
values and gradients of some chosen physical variables at t”. 
This procedure of determining the mesh distribution at t” + ’ 
in terms of information given at the t” is an explicit 
procedure. The equidistribution principle and the variable 
transformation described before leads to the following 
expression, that can be used in an explicit manner for mesh 
generation [6], 

I x WdxL((,,(J~ y’). 

0 
(2) 

Here t(x) is simply a function whose value is chosen to be 
equal to the mesh number. The second term on the right- 
hand side represents the average Wdx for each mesh cell. 
We call this procedure “explicit” because all the quantities 
on the right-hand side are given at t” and the weight func- 
tion W on the left-hand side is also defined at t” with the 
exception of the integral’s upper limit x being given at t”+ ‘. 
After x”+’ is calculated, the mesh edge velocity could be 
found by differencing the old and new values of x with 
respect to time. The formula for this, x,, will be given 
later in another section. The mesh metric xg is simply the 
difference in the space locations, equal to Ax if At is taken 
to be 1. 

Therefore, knowing xg and x, beforehand, the physical 
equations can be evaluated without any difficulty. However, 
one has to determine what the weight function should be. 
Many forms of weight function can be postulated. One that 
proves to be both simple and robust is the following 

where A and B are some normalized physical quantity such 
as velocity, pressure, mass density, momentum density, or 
temperature. Also A,, A,,, B,, and B,, are the first and 
second derivatives of A and B with respect to the spatial 
coordinate x. Dwyer [7, 81 has developed a strategy to 
determine CI and /I through a specified fraction of points to 
be assigned to each function variation. That is, if R, is 
defined as the fraction of grid points to be assigned to the 
first derivative variation, U,, then 

c! !‘” Iuxl dx=R,jL (l+a IU,I +P I~,,l)d~ (4) 
0 0 

and also for the second degree of variation U,,, 

If R, and R, are held constant for the problem, then c1 and 

/I will be determined at each time step while the solution 
develops. Determining c(‘s and /I’s from these equations 
follows an explicit procedure that uses the old values at time 
t” on the right-hand-side to come up with new values at time 
t n+ * on the left-hand side. In fact, one could time-average 
the old and new values as we have done. Also, one does need 
an initial guess, such as the following, to start the procedure: 

thus from Eq. (4), 

B =o; 

RJ 
‘=(1-R&$ IU,I dx’ (6) 

Thus, R is the fraction of mesh points that are reserved for 
chosen gradients of A or B. Notice that Eq. (3) enables one 
to construct W out of two variables, A and B, which means 
one can adapt using more than one function. This obviously 
enhances the power of solving multigradient problems 
accurately. 

3. RADIATION-MAGNETOHYDRODYNAMICS 

We analyze only the radial motion of the plasma and thus 
assume a one-dimensional model symmetry in all other 
dimensions. The equations are presented for curvilinear as 
well as Cartesian coordinates. The problem of ion beam 
transport channels is in cylindrical geometry as shown in 
Fig. 1 whereas the target explosion problem is studied 
in spherical geometry, shown in Fig. 2. The radiation 
hydrodynamics equations are written in the laboratory 
frame and then transferred to the adaptive grid frame. They 
are solved along with a set of grid equations, based on 
Eq. (2), that describes how the grid system evolves in time. 
The explicit grid generation procedure prevents implicit 
coupling between the physical equations and the grid 
system. A conservative differencing scheme based on the 
control volume approach is chosen to retain the conser- 
vative nature of the governing equations. The numerical 
method to discretize the equations is a first-order upwind 
differencing scheme (donor cell). The dissipative charac- 
teristics of the upwind differencing are minimized with grid 
adaptation. 

The governing equations for a nonrelativistic fluid in the 
frame of radiation-magnetohydrodynamics (R-MHD) are 
described as [9, lo] 

~+V.(pu)=O 

~(p”+-$F)+vp+V.(p”“+B)=~ (7) 

i(e,+e,)+V.(q+(e,+p)u+F)=J.E 
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where eP and eR are energy density for plasma and radia- 
tion, F and p are radiation flux and pressure tensor. Also 
J E is the Joule heating term and is equal to E’ . J’, the rate 
of Joulean dissipation in fluid frame, plus u . (J x B/c), the 
rate at which the force J x B/c does work. A relation is 
needed between the pressure, density, and temperature to 
close the system. This relation can be found using the 
equation of state 

p=(l +Z)nkT, 

where Z is the average charge state, n is number density, and 
T is temperature. 

The state of the radiation field and the magnetic field 
are found through the radiative transfer equation, the 
Maxwell’s equations and Ohm’s law, respectively. The 
radiative transfer equation is a mathematical statement of 
the conservation of photons and is given in the form [ 111 

where I is specific intensity, q and x are called emissivity and 
extinction coeffkients, and fi is the directional unit vector. 
The space-time evolution of the magnetic field in the MHD 
approximation is given as 

t3B 
,=ox(uxB)-Vx(&VxB), (9) 

where o is the electrical conductivity of the plasma. 
The equation describes how the magnetic field lines are 
convected and diffused in the non-relativistic and low- 
frequency plasma fluid. 

In cylindrical coordinates, particularly for the z-pinch 
plasma problem, the radial dependence of an azimuthal 
magnetic field interacting with an axial current becomes 

Here J, is the ion beam current density flowing in the 
channel, and q is the plasma resistivity. Also the multigroup 
photon conservation equation in one-dimensional (radial) 
cylindrical coordinates becomes 

gz&Jr, t,ti)+g(rz&, t,si)) 

-St(rr,(r,t,li))=s,-x,l,(r,t,si), (11) 

where we have replaced the streaming term [ 121 in the 
radiative transfer equation by 

The group constants qg and j, are given as 

and 

(12) 

(13) 

assuming that one has enough groups so that x is nearly 
constant for each group. All radiation and material proper- 
ties on the RHS of Eq. (8), (1 l), and (13) are being 
measured in the inertial (lab) frame and they are assumed 
to be isotropic. Actually, there is a need to account for 
the velocity-dependence of these terms but this velocity- 
dependence is on the order of 0(11/c) and the authors believe 
the velocity-induced frequency shifts are ignorable for the 
problems of interest. The alternative is to use radiation/ 
material properties evaluated in the comoving frame [ 111. 
Here ZL, w, and c are angular variables as shown in Fig. 3. 
Cylindrical coordinates are complicated by the fact that 
even in one spatial dimension two angular variables, [ and 
W, are needed to describe the angular dependency of specific 

e- 

FIG. 3. Cylindrical space-angle coordinate system. 
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intensity I. As shown in Fig. 3, o is the angle between i and 
fi, and thus 

/L=(l -G2)1’2COSW 

( = (1 - CJ~)“* sin 0. 
(14) 

The angular discretization can be done with a level- 
symmetric quadrature set described in [ 12, 161. 

4. EQUATIONS ON ADAPTIVE GRID SYSTEM 

Transforming the R-MHD equations, Eq. (7), to the 
adaptive frame, we reach the following one-dimensional 
adaptive fluid equations: 

Continuity: 

Momentum: 

CXg(pU+C-2F)]r+ [x”pu(u-x,)]s- [X6X,C-2F]t 

+ x”[ple + [X9-q< = x6xsFm, 

Energy: 

equations is preserved. For our adaptive mesh scheme. 
the control volume approach is the only viable approach ij 
conservation of the physical quantities is to be achieved [6] 
The reason is that the mesh dilates and translates during 
each time step, thus the relative fluid and mesh velocities at 
the cell edges and at the center are different. Care should be 
given to distinguish the cell edge and center velocities, which 
is done in the control volume approach. Most control 
volume schemes define the location of density, pressure, and 
energy at the center of the mesh while defining the location 
of the velocities at the mesh edge as shown in Fig. 4. 

Under the control volume approach, the identity 
equation 

[xbx5], = [x”x& 

is discretized as 

(x6x& + l - (x6x$ _ 
AZ - WxJ1+1,2- (-hK,,2~ 

where indices i and if 4 represent the ith cell’s center and 
edge values. < is chosen to be the successive number of mesh 
points as explained in Section 2. Therefore A( is equal to 1. 
For this difference equation to conserve the involved 
quantities, the cell edge velocities should be given as 

Cx&Ye, + edl, + Cx”e,(u- x,)lc - CxBx,eRIc 
+ [x6(/m + q + F)]< = x*x<E,,,, (15) 

(x~),r~,2=(x”,:+‘~~~~-~~~,2(x~)~. 
I+ 112 

where 6 = 0, 1, 2 for planar, cylindrical, and spherical coor- Before discretizing the fluid equations in Eq. 

dinates. Here F, and E, are the electromagnetic force and introduce a von Neumann-Richtmyer artificial 

energy for the chosen coordinate system. [ 131 that replaces the fluid pressure by 

It is important to recognize that for curvilinear 
geometries the identity P*P+Qy 

(16) 

(15), we 
viscosity 

c~Bxs.IT = CX6&le where Q = -p( C Ax)~ IAu/Axl Au/Ax. Here C is the artili- 

must be preserved in the difference equations in order for 
them to preserve the conservative form as in Eq. (15). That 
is, when differenced equations are solved on the discretized 
coordinates, care should be taken to provide this identity 
relation which also introduces a formula to calculate the 
grid speed while the grid points move from xn to x”+ ‘. This 
formula will be given in the next section. 

0 “-+ 
eg,P u 

+ 0 

I-l 1 I+ I 

a) Cell edge oriented 

5. DISCRETIZATION 

There are two paths to discretize the given equations: the 
differential approach and the control volume approach. In 
the differential approach, the equations are considered to be 
PDEs and it follows a pure mathematical track, and the 
physical significance of the variables can be lost. In the 
control volume approach, the conservative nature of the 

0 0 

1-I 1 I+ I 

b) Cell center omented 

FIG. 4. Control volume approach. 
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cial viscosity model coefficient and u is the fluid velocity. 
Although the inclusion of such numerical dissipation 
may not be necessary with an already dissipative upwind 
differencing, we have kept it there to test its effects and, for 
the simulations in this paper, C is 1. 

The fluid equations are then discretized as follows: 

except that the discretization on the pressure term is not 
done by the upwind scheme, but rather is [ 141 

Pi+ I -Pi-l Pi+,-Pi--l 

cp’~=A,i+A~i~l= 2 

Continuity equation. [xdxep],+ [x”p(u-xXc)],=O.An The differenced momentum equation for the radiating- 
explicit control volume scheme gives magnetized plasma is then 

(x”x;p)Y’ 1 - (x6x(p): 
AT 

+ (x”p(u - x,)K+ l/2 - WP(U -x,)X- l/2 = o, 

Ai; 

Because 5 is under our control we choose it to be the 
number of mesh points, say 5 = 1 for the first mesh point 
and 2, 3, . . . . N for the rest. From this, At becomes unity 
( Axi = 1). In order to evaluate the cell edge (i T $) values of 
physical variables we apply a first-order upwind (donor cell) 
scheme [ 141. This scheme simply equates the edge value 
with one of the neighboring cell center values depending 
upon the sign of the edge velocity ui7 1,2. That is, 

and 

Pi+ l/2 = Pi if u~+,,~>O 

and 

Pr+l/z=Pi+l if ui+ ,j2 < 0 

and 

Pi- l/2 = Pi& 1 if uiP ,,2 b 0 

Pi- 112 = PI if u,-,,~<O. 

The differencing formula to find P:+’ is then 

p;+’ = 
1 

(x”xc);+ ’ {(x”xcP): 

-AT {(x~P(u - xr)K+ ,,2 

- WP(U -&I):- ,,2I 1. (17) 

Note that the mesh distribution (x6, xc, x,) on the right- 
hand side at time t” and t”+’ is known before the partial 
differential equation is solved for pr+ ‘. The method of 
determining the mesh distribution was discussed earlier in 
Section 2. 

Momentum equation. The same discussion for the 
continuity equation applies for the momentum equation 

+ {(x”pu(u - x7)):+ l/2 - (x”pu(u - x,)X. l/2 1 

- (x6x& F,,, = 0. (18) 

Again, the upwind scheme is used to evaluate the cell edge 
values. As a last step uy+ ’ is found provided that all values 
at time t”, and F at time tn+ ‘, are known. Ideally, the 
plasma equations and the auxiliary radiation field equation 
are to be solved simultaneously, but because of the explicit 
scheme being used here, one can solve the radiation field for 
t ‘+I upon plasma properties at t” and then further solve 
the plasma equations. The magnetic force F, in the fluid 
equation appears to be at t”, therefore (F,,,); is known in 
advance. 

Energy equation. Recall that the energy equation for the 
radiating-magnetized plasma is 

Cx6xg(ep + e,)l, + Cx”e,(u- x,)le - Cxdx,eRlc 
+ [x’pz++ [x”(q+F)]<-x6xgE,=0. 

The differenced form is 

& { (xbx,&ep + e,));+ ’ - (x6xg(ep + e,));} 

+ {We,(u - x,)K+ ,,* - (x”e,(u - x,1):- 1,2} 

- {Wx,eR)7+ 1,2 - (x”x,eR)lp l,2} 

+ {WP47+ l/2 - (X”PUX.. l/2) 

+ ibs(s + F)K+ ,,2 - (x’(q + UC 1,2} 

- (X6X<)’ (E& = 0. (19) 

This equation is solved for (e,):” in terms of the values 
given partially at time t” and at time t”+ ’ (xc, x,, eR). 
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6. APPLICATIONS 

Two applications are chosen to demonstrate the adaptive 
hydrodynamics scheme. The first examines how the grid 
redistribution handles severe discontinuities. In the second, 
we compare our plasma channel simulations with those 
found by a lagrangian multigroup radiation diffusion 
scheme. A list of the major steps that our numerical proce- 
dure follows to update the equations on an adaptive mesh 
from time t” to t”+ ’ is given below: 

l Given the fraction of the mesh points to be used for the 
first and second degree variation of the chosen adaptive 
function, R, and R,, calculate CI and /3 through Eqs. (4) 
and (5). 

l Calculate the weight function W using updated values 
(time t”) of the chosen adaptive function. 

. Compute new mesh points, xg and mesh speeds, x, by 
Eqs. (2) and (16). 

l Solve the governing equations for time t” + ‘. 
l Set up the new time step. 
l Repeat steps. 

Time step control is done by fixing the CFL number 
globally. The compressible flow CFL number is typically 
defined [ 143 for a fixed mesh system as 

CFL= (lul +a,$, 

where a is the local sound speed. For an adaptive scheme we 
can define the CFL number as 

where U,,~~ = 4 (u, + u,), U, and U, being the right and left 
edge velocities. 

6.1. Shock Tube 

A common benchmark problem for new CFD models is 
the shock tube problem by which the method is examined 
against severe discontinuities. Hence, the following section 
will present how our adaptive mesh scheme treats such a 
problem. The magnetic and radiative properties of the fluid 
are artificially ignored, assuming a pure gas dynamical 
flow. An analytic solution to this problem (Sod’s shock 
tube [15]) does exist for comparison with the numerical 
hydrodynamics calculations. The problem is studied here in 
only one spatial dimension and in one geometry (planar), 
although its applications in curvilinear geometries are 

studied elsewhere by the authors [ 16). The physical domain 
is divided into two regions of different conditions as 

Left P, = 1.0, pL = 1.0, eL = 2.5, 

ML = 0, 0.0 d x 6 0.5, 

Right P, = 0.1 , pR = 0.125, eR = 2.0, 
(20) 

UR = 0, 0.5 6 x < 1.0, 

Here, also the ideal gas equation of state, 

P=(y-1)ep; y=1.4, (21) 

is assumed and the boundary conditions at x = 0 and x = 1 
are reflective. A complete history of the time evolution of the 
problem, even up to the late times where no analytical 
solution exists, is given by Winkler et al. [ 17, IS], and this 
is taken as a reference for comparison. 

The region L has higher pressure and thus higher density. 
At time t = 0 + the system is released and a shock front is 
formed, propagating to the right. In a shock problem like 
this there are three distinct regions that must be resolved by 
the numerical method: (1) the shock wave, (2) the contact 
discontinuity, and (3) the rarefaction wave. The simulations 
are done over 100 mesh points with the adaptation 
functions being the momentum density with R,=0.35 and 
R, = 0.15 and the CFL number being 0.5. Figure 5 shows 
the mass density profiles for t = 0.01079, 0.228, 0.364, and 
1 s with no adaptation at all (fixed mesh system). Besides 
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the characteristics of the eulerian grid scheme, these results However, as reported by Sod, the upwind differencing on 
reflect those of the first-order upwind scheme used in the a fixed grid system is not very satisfactory. The corners 
model. These results are similar to those by Sod [ 15) for an at the endpoints of the rarefaction, the discontinuity, 
upwind difference scheme, except that we do not see any and the shock are extremely rounded, showing how 
artificial shock which Sod describes to be between the left diffusive the numerical scheme is. Also the reflection from 
constant state and the left endpoint of the rarefaction wave. the wall and the interaction of waves after the reflection is 
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misrepresented by the numerical oscillations, where using 
an adaptive grid system can be utilized most. 

Figures 6, 7, 8, and 9 show the mass density, pressure, 
velocity, and internal energy profiles for the same problem 
using an explicit adaptive mesh. The resolution at the 
corners clearly point to the advantage of using the adaptive 
scheme. Adapting the mass density seems to be capturing 
most of the steep gradients in pressure, velocity, and inter- 
nal energy, too. The mesh spacing is inherently limited to 
some degree in our explicit adaptive scheme since the 
stability criteria requires smaller timesteps for liner mesh 
spacing. Note how the adaptive mesh counteracted the dif- 
fusive nature of a first-order scheme (upwind differencing). 
The diffusive characteristic of the upwind scheme may still 
be seen around the rarefaction region and this warrants 
future investigation into second-order schemes. When com- 
pared to Winkler’s results in Fig. 10, our results show a very 
good agreement. The location of the shock front and the 
contact discontinuity, the reflection from the boundary all 
indicate the scheme’s robustness, except that its resolution 
power is not as impressive as Winkler’s implicit adaptive 

(a) (b) 

grid method. The advantages and disadvantages of implicit 
and explicit schemes, however, still make both methods 
equally interesting. 

6.2. Dynamics of Z-Pinch Plasma Channels 

Lagrangian grid schemes have often been used to model 
this type of problem. Typical plasma channel simulations by 
ZPINCH [3] indicate a blast wave character of the 
discharge plasma while it is interacting with the magnetic 
field. The nature of the z-discharge plasma channel problem 
creates steep gradients in density, temperature, and electri- 
cal conductivity which one would like to resolve. Being a 
lagrangian code, ZPINCH automatically resolves only den- 
sity gradients, yet because the density is low in the region 
where the temperature (and hence the conductivity) peaks, 
the mesh in this region is elongated. This effect tends to 
smear the temperature and magnetic field gradients in 
space, thus losing the resolution (accuracy) needed to 
follow this non-linear conduction problem. 

The weakness of the ZPINCH code is not only the grid 
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FIG. 10. Numerical solution of Sod’s shock-tube test problem by Winkler et al. [ 173 at times t = 0.01079,0.228,0.364, and 1.0. Grid points are shown 
individually. 
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system. It also treats the radiation in the channel with a 
diffusion approximation, despite the fact that the mean 
free path of X rays in most of the plasmas (argon, helium) 
used for z-pinch channels is much larger than the physical 
dimensions of the channel. Hence, the diffusion approxi- 
mation of radiation hydrodynamics is simply inadequate 
for such applications. To show what we have gained by 
developing an adaptive-grid radiative transfer scheme, 
namely R-MHD, as opposed to a lagrangian scheme for 
ICF plasmas, we will present a comparison of our plasma 
channel results with those by ZPINCH. The channel is a 
cylindrical column filled with argon gas of initially uniform 
density 2.32 x lop5 g/cm3. The supplementary data (equa- 
tion of state and opacity tables) were taken from an atomic 
physics code [22] which treats non-LTE plasma condi- 
tions. The simulations assumed an argon gas with an initial 
gaussian temperature profile corresponding to heating by a 
preionizing laser beam of 2 mm half-width. Simulations are 
done in three approximations: pure hydrodynamics (HD), 
magnetohydrodynamics (MHD), and radiation-magneto- 
hydrodynamics (R-MHD), meaning that we artificially 
turned off the discharge current and the radiation field to 
check various effects in each case. 

We have tried different adaptation functions (i.e., 
temperature, resistivity, momentum, momentum-resistivity, 
and momentum-temperature) and noted the importance of 
the adaptation in such calculations. Due to the fact that a 
momentum density (pu) adaptation keeps the point concen- 
tration high all over the inner region of the channel, we have 
done the final simulation with that adaptation. The number 
of mesh points is 50, all spread in a channel of l-cm radius. 
The user-defined R, and R, constants are 0.3 and 0.1, 
respectively. The number of frequency groups was chosen to 
be 20, and the angular discretization is based on a S-6 level- 
symmetric quadratic discrete ordinates set as described in 
detail in Ref. [16]. 
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FIG. 11. Adaptive mesh distribution at various times. 
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FIG. 12. Lagrangian mesh distribution at various times. 

For the pure hydrodynamic case the mesh distribution for 
the lagrangian grid and the adaptive grid is shown in Fig. 11 
and 12. Figures 13 and 14 show the density profiles, and 
also Table I compares the mesh spacing for both grid 
schemes. As mentioned before, lagrangian zones concen- 
trate where the density peak lies; thus they leave few points 
at the center (rarefaction) region, where a liner mesh dis- 
tribution is needed when the magnetic and radiation fields 
are included. Note that the lagrangian scheme has put a lot 
of points around the density peak, and the mesh spacing it 
provides at that point is better than ours, although we could 
achieve this too by adjusting our user-given R, and R,, 
or by changing the adaptation function. The adaptation 
scheme, on the other hand, adapted the points on the 
momentum density, which has a relatively mild gradient 
starting from the channel center to the density peak point. 
Thus it distributes the points with a balanced manner in 
the inner channel providing a platform for possible multi- 
gradients in temperature and magnetic field. The outcome 
of Fig. 11 through 14 and Table I is that the lagrangian grid 
may be good enough for pure hydrodynamics cases, since 
there are no interesting gradients behind the density peak 
where actually the adaptive scheme provides a liner mesh 

TABLE I 

Mesh Spacing at Various Points at Time 1.4 ,us 

Method dxatr=O dx at density peak AX 

R-MHD 0.0165 0.016 0.017 
ZPINCH 0.0287 0.011 0.021 
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” ” I ” ‘-I TABLE II 

Various MHD Channel Parameters at Time 1.4 ps 

Times (mcrs) 

Channel radius Magnetic field TG Temperature 
Method rc (cm) at r = rc (kG) (cm) atr=O(eV) 

0 0.00 
n 0.50 
+ 1.00 
x 1.40 

R-MHD 0.53 22 0.018 11.5 
ZPINCH 0.63 18.6 0.030 10 

I / I I 

0.5 

Radius (cm) 

(grid scheme, spatial differencing). Although the difference 
in radiation transport schemes contributes more to the 
overall picture, the numerics, as seen in the HD and MHD 
cases, also plays a role. The peak magnetic field and the 
corresponding radius between R-MHD and ZPINCH differ 
around 15 % in the MHD case, where the difference is only 
in numerics, and 35% in the R-MHD case, where the dif- 
ference is in both numerics and physical modelling. The 
magnetic field and its channel radius are related as 
B, CC W,; thus a change in one automatically affects the 
other. Recall that the diffusion model assumes high absorp- 
tion, and this absorption causes the radiation emitted from 
central regions to be absorbed at the channel edge. The 
channel boundary then expands due to the heating and this 
can further cause a degradation in the magnetic field. If, in 
fact, the absorption is not that high, then the photons would 
travel a large distance before being absorbed, and this large 
distance may actually reside outside the channel. The 
streaming conditions of photon flux would have to be 
studied in more detail to solve the frequency- and angular- 
dependent flux. Doing this and also introducing a more 
powerful grid scheme, our adaptive-grid radiation- 
magnetohydrodynamics model has a lot of potential for the 
study of ICF target explosions and z-pinch plasma channels. 
Its impact on plasma channel designs has been significant. 
Earlier studies [24] of different cavity gases (argon, 
nitrogen, helium) for the LIBRA reactor study indicated 
that lower atomic number gases (helium) were most 
suitable for plasma channel formation. We found unaccept- 
able channel spreading due to radiative transfer with the 
multigroup diffusion approach. Our new set of simulations 
with the newly developed R-MHD [25] code showed lower 
absorption and emission by these optically thin gases. Thus, 

FIG. 13. Mass density profiles (R-MHD) at various times. 

spacing. However, we should recall the fact that liner mesh 
spacing does increase the accuracy, and clearly here the 
average mesh spacing gained with the adaptive scheme 
throughout the channel is better than that of the lagrangian. 

The effect of radiation on the channel dynamics can be 
observed by comparing Tables II and III. The results (peak 
magnetic held B, and the corresponding channel radius rc, 
channel-center temperature To) are very different between 
the ZPINCH and R-MHD. With the introduction of 
radiation in the channel simulation, the change in B, 
and r, is predicted to be 30 % by ZPINCH and 10% by 
R-MHD. ZPINCH indicates further channel expansion, 
lower magnetic field, and higher energy loss through radia- 
tion transfer. The cause for this difference can be classified 
to be both physical (radiation transport) and numerical 

0.3999e4 

z 
,o 0.2999e-4 
9 
>I 
J 
c 

0” 

$ O.lQQQe-4 

2 

O.OOeO IIIlI IIIII I IllI IIIII I"" 
O.OOeO 0.3OOOeo 0.6OOOeO 0.90OOeO 1.2000eO 1.5OOOeO 

FIG. 14. Mass density profiles (ZPINCH) at various times. 

TABLE III 

Various R-MHD Channel Parameters at Time 1.4 ps 

Channel radius Magnetic field Ii Temperature 
Method rc (cm) atr=r,(kG) &ml at r=O(eV) 

R-MHD 0.6 19 0.018 5.2 
ZPINCH 0.9 12.5 0.020 2.4 
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application of the new scheme to the LIBRA reactor design 
indicated the feasibility of high atomic number gases 
(argon, nitrogen) [26]. Higher atomic number gases are 
preferable in the cavity for their attenuation of the X rays 
coming from the target explosion. 

7. SUMMARY 

The nature of ICF target explosions and beam transport 
channels create steep gradients in many physical quantities. 
Lagrangian grid schemes automatically resolve only density 
gradients, yet because the density is low where other quan- 
tities (i.e., temperature) peak, the mesh in this region will be 
elongated. This effect will tend to smear whatever gradient 
occurs there, thus causing a lack of resolution needed to 
follow such non-linear problems. The explicit adaptation 
scheme based on the equidistribution principle is easily 
applied to solve hyperbolic conservation laws in one dimen- 
sion. The first-order upwind finite difference scheme has sur- 
vived Sod’s shock tube problem with the help of the grid 
adaptation. A local grid refinement factor of lo* was found 
compared to a fixed mesh distribution. Finer mesh spacing 
would require smaller time-steps and thus a higher cost. 
When compared to a lagrangian radiation diffusion calcula- 
tion of plasma channels, our method brings liner grid refine- 
ment (a factor of 2) and more accurate description of the 
radiative transfer in the channel. Applications to z-pinch 
plasma channels made an impact on the LIBRA channel 
designs by showing the feasibility of high atomic number 
(argon, nitrogen) gases for the cavity. The applications to 
ICF target explosions are also expected to utilize the new 
model in the near future. The issue of using a second-order 
accurate method should be considered next in taking the 
study further. Improvements in plasma modelling include 
separate electron and ion temperatures. The ion and elec- 
tron temperature coupling time constant, which depends on 
the specific heat ratio, may very well be longer than some 
characteristic timescales in the system. In conclusion, the 
use of an explicit adaptive grid system has proven to be 
quite useful and multi-gradient problems are the best 
candidates to utilize it. 
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